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ON NECESSARY AND SUFFICIENT CONDITIONS FOR
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Abstract. Necessary and sufficient conditions are given for regulation of linear systems over rings using N
observers and causal dynamic state feedback systems with the polynomial fractional representation property. %
The results are then used to obtain stabilizability conditions for systems over integers, delay-differential
systems, systems over polynomial rings, and to obtain conditions to make a 2-D system nonrecursive. . ‘

1. Introduction. Regulation of linear systems over rings has been considered by
several authors. (See Pandolfi [1975], Morse [1976], Sontag [1976], Byrnes [1978],
[1979], Kamen and Green [1980], Emre and Khargonekar [1980], Hautus and Sontag :
(1980] and the references therein.) The first solution to the regulation problem using f
observers and causal dynamic state feedback for finite free split linear systems over
arbitrary commutative rings was given in Emre and Khargonekar [1980], where a
theory of observers and coefficient assignment by causal dynamic state feedback was
developed. Although the split condition is necessary for regulation via coefficient
assignment, it is not necessary for regulation.

The purpose of this paper is to replace the split condition by stabilizability and y
detectability, which are (as we will show) necessary and sufficient conditions for 3 i
regulation by observers and causal dynamic state feedback systems satisfying the
fractional representation property (a system (F, G, H, J) is said to satisfy the fractional
representation property if and only if its transfer matrix can be expressed as PQ ", ‘
where P, Q are polynomial matrices such that det Q =det (zI —F)). A

Recently the concept of detectability has been extended to systems over finitely
generated algebras by Hautus and Sontag [1980]. In § 2 of this paper we extend the
concepts of stabilizability and detectability to linear systems defined over arbitrary
commutative rings and prove that these are necessary and sufficient conditions for
regulation by using observers and causal dynamic state feedback systems satisfying
the polynomial fractional representation property. (For details of this scheme the

:"'reader is referred to Emre and Khargonekar [1980] and also to § 2.) Then in § 3, we
-
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se the results of § 2 to obtain stabilizability (also detectability) conditions for systems

¢_opver polynomial rings, delay-differential systems and systems over integers, we also

obtain conditions which make a 2-D system nonrecursive. We also discuss the fact

L1 Jthat for the first two cases our detectability result is (essentially) the same as that of
~ IHautus and Sontag [1980].

Lue For general properties and formulations concerning linear systems over commuta-

tive rings, the reader is referred to the survey papers Sontag [1976] and Kamen [1978).

2. Stabilizability and detectability. In this section we introduce some notation .
= and other preliminaries, and then give necessary and sufficient conditions for regulation
using observers and dynamic causal state feedback systems satisfying the polynomial
fractional representation property, namely, stabilizability and detectability. We will

-
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first assume that the state is available and concentrate on causal dynamic state feedback.
Then we will explain how the case where the state is not available can be solved using
these results (which concern stabilizability) and using observers (detectability).

Throughout the paper, k denotes an arbitrary but fixed commutative ring with
identity. k° denotes vectors of size p with entries in k. For a given set S, S[z] denotes
polynomials in z with coefficients in S. $°*7 denotes p X q matrices over S. S((z "))
denotes formal power series of the form

© .
Yaz™,
i=1

where [ is an integer and a; is in S. A power series a in SW(z™Y) is causal (strictly
causal) if and only if /=0 (/>0). z”'S[[z '] denotes the set of strictly causal power
series with coefficients in S. For a p X p nonsingular matrix Q over kfz], ko is defined
to be the k-linear module of polynomial vectors x in k”[2] such that Q~ 'x is strictly
causal (as a power series).

The k-linear maps I and 1o are defined as follows:

M: k°((z7"))» 2" 'k°[[z”']], x> the strictly causal part of x,
Ilo:k"[z]-vko, x—»OH(O"X)-

For a p xr polynomial matrix ® with the ith column ¢;, we define I1o(®) to be
the p x r matrix whose ith column is Ilo(¢;). For a k-linear map M : X -» X, where
X1, X, are k-linear modules, Im M denotes the image of X; under M as a k-linear
module, and ker M denotes the kernel of M. If P is a p x m polynomial matrix whose
ith column is expressed as

pi = 2 a;iz i»
i=0
where ay,, # 0, we say that P is column proper if and only if ai,,, " * *, @m,,, is a set of
generators for the k-module k°. P is row proper if and only if its transpose is column
proper.

Throughout the paper we assume that there exists a multiplicatively closed set
of monic polynomials P, in k[z], called the set of stable polynomials. A rational
function p/q, where p, q are in k[z], is stable if and only if q is in P,. A rational
matrix is stable if and only if all of its entries are stable.

A finite free linear system over a commutative ring &k is the triple (F, G, H),
where F isin k"™", G is in k"™, and H is in k*™". Throughout the paper we will be
concerned with such systems only. An equivalent representation is in terms of k-linear
maps with a finite free state module. For a detailed introduction to linear systems
over rings we refer to the survey papers Sontag [1976] and Kamen [1978).

For a given pair (F, G), we define

Wi=ImG+---+ImF'G, i=0,1,-:.

For a matrix A, det A denotes the determinant of the matrix A.
A system (F,, G,, Hi, J;) is said to have the polynomial fractional representation
property if and only if its transfer matrix Hy(z] - F)"'G, +J, can be expressed as

rP.Q:',
where P,, Q. are polynomial matrices (over k[z]) such that det Q. = det (zI — F)).




o TR e v < S T A a4 AT TS S

REGULATION OF LINEAR SYSTEMS OVER RINGS 157

For a matrix A, SpxA denotes the k-linear module generated by the columns of
A. For a polynomial matrix P, §;(P) denotes the degree of the ith column of P,

Now we state the main results of this section.

DEFINITION 2.1. Let Fbein k"™", andlet G be in k" ™. Then (F, G) is stabilizable
if and only if there exist stable rational matrices V;, V; such that

(2.2) (2 -F, c;][ “2] =1,

Remark 2.3. We will call {H, F) detectable if and only if (F', H') is stabilizable.
(For a matrix A, A’ denotes the transpose of A.)
THEOREM 2.4. There exist polynomial matrices P,, Q. such that
(i) Q. is column proper;
(i) PO is well defined as a power series, and is causal, and has a realization
(F1, G, Hy, 1) such that det Q. =det (2] —F,); and
(iit) the determinant of

(2.5) ®:=(zI -F)Q,. +GP,
is a stable polynomial if and only if (F, G) is stabilizable.
Proof. Necessity. Postmultiply both sides of (2.5) by &

Sufficiency. If (F, G) is stabilizable, then there exist stable polynomial matrices
V1, V: satisfying (2.2). Express V), V; as

Vi=Nid- D',  V,=Nyd-I7,

where N,, N, are polynomial matrices and d is a stable monic common multiple of
the denominators of the entries of V,; and V. (Such a d exists as V; and V; are both
stable.) Then we have

(zI-F)N1+GN,=d - L

Let v be the smallest integer such that W,_, = W, _,. Let r be the degree of d. Let
¥; be the smallest integer such that

(2.6) vi=lrzo
for some integer [ = 1. Define D‘r ; ;:
@7 di=d, Ny=d'""'-Ny, Ny=d'""' N, ELECTE
Then we have L
2.8) (2 ~F)N,+GNy=d, - I. AUG 1 2 1982W
Note here that, as P, is multiplicatively closed, d, is stable.
Equation (2.8) implies that A
(2.9) Met-rdy - I W,_,.

Then, by Emre [1980, Thm. 3.1), there exist polynomial matrices P, Q. such that:
(i) Q. is column proper with the ith column degree y, — 1, and with the highest
degree column coefficient matrix J (which ensures that Q. ! is well defined).
(ii) P.Q:" is well defined and causal, and has a realization (F;, G, H,, J,) such
that det Q. =det (z] - F,). (The fact that this system has the polynomial fractional
representation property is seen from the results of Emre and Khargonekar [1980].)




158 . E. EMRE . ¢

(iid)
(z2I-F)Q.+GP.=d, I

As d7 =det (d, - I) is stable, the proof is complete. 0O .

The next theorem shows that stabilizability is a necessary and sufficient condition
for regulation of the system (F, G, I) by causal dynamic feedback with the polynomial
fractional representation property. A

THEOREM 2.10. Let F, G be given. Then there exists a finite free dynamic feedback ,' .
system (Fy, G1, H\, J\) over k such that

(i) Hi(zI —F\)'G\+J, can be expressed as P.Q_" for some polynomial matrices E 4
P., Q. with the property that ¢t Q. =det (2] — Fy), and : 1

(ii) the characteristic polynomial of the closed loop system obtained by taking the ’ ‘
state as the external direct sum of the states of the open loop system and the feedback
system is stable if and only if (F, G) is stabilizable.

Proof. Under the hypotheses of the theorem the characteristic polynomial of the
closed loop system can be easily shown to be equal to

det ((zI - F)Q. + GP.).

The rest follows from Theorem 2.4. O

The next theorem provides a criterion to determine the stabilizability of (F, G)
in terms of [2] - F, G].

We consider k[z, z;], and its maximal ideals which we denote as {m, }, 1 for some
index set A.

For a matrix A = (a,) over k[z, 2,}, A, denotes the matrix which is obtained from
A by replacing a; with the residue class of a; modulo m,. For a detailed description
of these concepts, the reader is referred to an algebra book (e.g., Bourbaki [1972,
Chapt. 2]). Let {m;}:cx be the set of maximal ideals of k[z, z,] such that

(2.11) rank [z] - F, G]x<n.

After these preliminaries, we have:
THEOREM 2.12. (F, G) is stabilizable if and only if there exists a stable polynomial

q such that
qx =05

nid.

for each m;.

Proof. Necessity. If (F, G) is stabilizable, by Theorem 2.4 there exist polynomial
matrices P., Q., ®, with det ® stable, such that (2.5) is satisfied. Then evaluating both
sides of (2.5) at each m,, we have from (2.11) that det ® evaluated at each m; must
be zero.

Sufficiency. It follows from Bourbaki [1972, Chapt. 2] that a matrix M over
klz, z,] is right invertible over k[z, z,] if and only if M, is right invertible over

k(z, z,)/m, tor each maximal ideal m,, Now define ; )
M=zl -F,G,(z:q-1) - I]. ) i
From (2.11), the only maximal ideals such that rank of M, can possibly be less than t 1

n are {mz}. But, for each mj, we have ¢ = 0. Hence for each m,, we have

rank M, =n.

Thus M is right invertible over k[z, z,]. That is, there exist polynomial matrices !
M\(z, 21), Ma(z, z,), Ma(z, z,) such that

(II—F)M|+GM1+(Z|Q—1)M3=I. 3

e

P
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-

But then, letting z, = 1/4, we obtain

[2I-F, G][Mx(z, l/q)] -1

My(z,1/q)

As q is stable, by definition, (F, G) must be stabilizable. O

Remark 2.13. If k = K[s,, - -, sn], where K is a field, evaluations at the maximal
ideals of kf[z,z,] become evaluations of the polynomials at the points
(s¥, -+, sk 2% 2T) of KV*?, where K is the algebraic closure of K. For a detailed
discussion of this the reader is referred to Hautus and Sontag [1980], and for further
details to Bourbaki[1972, Chapt. 2]. In this case our definition of detectability becomes
the same (essentially) as the one developed in Hautus and Sontag [1980]. We should
note here that Theorem 2.12 remains valid when zI —F and G are replaced by 4
arbitrary polynomial matrices of compatible dimensions.

Based on Theorems 2.4, 2.12, we obtain the following corollary:

COROLLARY 2.14. If k =K{[s1," * *, 5n], then (F, G) is stabilizable if and only if
there exists a stable polynomial q in k[z] which vanishes at the points of KN*', where
[z — F, G] loses rank.

Proof. If we note that evaluating a polynomial in k[z] at the points of K~ *? is
the same as evaluating it at the points of K™*', the result follows from Theorem 2.12
and Corollary 2.14. [0 :

REMARK 2.15. If a system is given in the form (F, G, H) (i.e., the state is not
available), then one can use observers and dynamic feedback compensators together, 1
as shown in Emre and Khargonekar [1980], to achieve regulation. It is seen from the
formulations given in that paper, and in Hautus and Sontag [1980], that an observer
exists if and only if (H, F) is detectable. Furthermore, in such a scheme, the characteris-
tic polynomial of the closed loop system is the product of the characteristic polynomial :
of the observer and det ((zI — F)Q. + GP.), where Q., P. are as defined in this paper. !
Hence, regulation can be achieved by using observers and causal dynamic feedback
systems having the polynomial fractional representation property if and only if (F, G)
is stabilizable and (H, F) is detectable, and this result is valid for systems over arbitrary
commutative rings with our definitions here.

As for the polynomial fractional representation requirement of the feedback
systems, this is not a big restriction as far as known results are concerned because,
for example, nondynamic (constant) state feedback satisfies this property trivially.
One advantage of this property is that it allows the consideration of internal stability
in terms of the polynomial equations arising in stabilizability and detectability and
immediately guarantees the realizability of the feedback system. For a natural realiz-
ation that can be used to implement P.Q_", the reader is referred to Kalman, Falb
and Arbib [1969], Fuhrmann [1976] and Emre [19805].

3. Stabilizability of some specific classes of systems. In this section, using the
results of § 2, we obtain stabilizability (detectability) criteria for certain specific classes
of linear systems over rings.

1) Systems over integers. These systems are discrete time systems (F, G, H) over

K integers. The problem is to construct dynamic compensators with integer coefficients
such that the closed-loop system is regulated. In this case the set of stable polynomials
is of the form z" for some r = 0. From the definition, (F, G) is stabilizable if and only
if [2] — F, G] has a right inverse whose entries have denominators of the form 2z for
some integer r =0, or if and only if there exist polynomial matrices N,, N; with integer
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coefficients and some integer » = 0 such that

3.1 (zI-F)N,+GN;=z"-1
We see that (3.1) is possible if and only if
(3.2) F'cImG+ - -+ImF"'G,

for some r=0.

' 2) 2-D systems. In this case, k = the ring of proper rational functions over a field.
Here the problem is to find a causal dynamic feedback system such that the characteris-
tic polynomial of the closed loop system becomes z* for some 7 = 0. This problem will
have a solution if and only if (F, G) and (F', H') satisfy the condition (3.2).

3) Systems over a polynomial ring K[sy, - ,sn]. In this case we obtain the

4 following theorem.

THEOREM 3.3. (F, G) is stabilizable if and only if at every point (s¥,: -, 5%, z*%)
of KN*" where [zI - F, G] loses rank, the real part of z* is negative.
4) Delay-differential systems. This is the same as systems over polynomial rings

except that the set of stable polynomials is different. We have Corollary 2.14.
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